
Package: hdflex (via r-universe)
August 29, 2024

Type Package

Title High-Dimensional Aggregate Density Forecasts

Version 0.2.1

Maintainer Sven Lehmann <sven.lehmann@uni-rostock.de>

Description Provides a forecasting method that maps vast numbers of
(scalar-valued) signals of any type into an aggregate density
forecast in a time-varying and computationally fast manner. The
method proceeds in two steps: First, it transforms a predictive
signal into a density forecast. Second, it combines the
generated candidate density forecasts into an ultimate density
forecast. The methods are explained in detail in Adaemmer et
al. (2023) <doi:10.2139/ssrn.4342487>.

License GPL (>= 2)

Depends R (>= 4.3.0)

Imports checkmate (>= 2.3.1), dplyr (>= 1.1.4), parallel (>= 4.3.0),
Rcpp, roll (>= 1.1.6), stats (>= 4.3.0), stringr (>= 1.5.1)

Suggests testthat (>= 3.2.1)

LinkingTo Rcpp, RcppArmadillo

Config/testthat/edition 3

Encoding UTF-8

LazyData true

NeedsCompilation Yes

RoxygenNote 7.3.1

URL https://github.com/lehmasve/hdflex

BugReports https://github.com/lehmasve/hdflex/issues

Repository https://lehmasve.r-universe.dev

RemoteUrl https://github.com/lehmasve/hdflex

RemoteRef HEAD

RemoteSha c5fdd4bd217b4fbb1486cd95a1933a661c85bff3

1

https://doi.org/10.2139/ssrn.4342487
https://github.com/lehmasve/hdflex
https://github.com/lehmasve/hdflex/issues

2 benchmark_ar2

Contents

benchmark_ar2 . 2
dsc . 3
hdflex . 4
inflation_data . 5
stsc . 6
summary_stsc . 11
tvc . 12

Index 18

benchmark_ar2 AR(2) benchmark forecasts for quarterly U.S. inflation

Description

Out-of-sample one-step-ahead AR(2) benchmark forecasts for the period from 1991-Q2 to 2021-
Q4. The AR(2) models are estimated with OLS and intercept.

Usage

benchmark_ar2

Format

A matrix with 123 quarterly observations (rows) and 4 benchmarks (columns):

GDPCTPI OOS-AR2-benchmark forecast for quarterly GDP deflator (GDPCTPI).

PCECTPI OOS-AR2-benchmark forecast for quarterly PCE deflator (PCECTPI).

CPIAUCSL OOS-AR2-benchmark forecast for quarterly Total CPI (CPIAUCSL).

CPILFESL OOS-AR2-benchmark forecast for quarterly Core CPI (CPILFESL).

Source

<https://doi.org/10.1111/iere.12623>

References

Koop, G. and Korobilis, D. (2023) "Bayesian dynamic variable selection in high dimensions." In-
ternational Economic Review.

dsc 3

dsc Generate dynamic subset forecast combinations

Description

‘dsc()‘ can be used to generate forecast combinations from a set of candidate density forecasts.
For each period, ‘dsc()‘ selects a subset of predictive densities with highest ranks regarding (local)
predictive accuracy. Both the identities of the candidate forecasts that are used for building the
combined forecast and the subset sizes may vary over time based on the data. If only one candidate
forecast is picked, the approach (temporarily) collapses to pure model selection.

Usage

dsc(gamma_grid, psi_grid, y, mu_mat, var_mat, delta, n_cores)

Arguments

gamma_grid A numerical vector that contains discount factors to exponentially down-weight
the past predictive performance of the candidate forecasts.

psi_grid An integer vector that controls the (possible) sizes of the active subsets.

y A matrix of dimension ‘T * 1‘ or numeric vector of length ‘T‘ containing the
observations of the target variable.

mu_mat A matrix with ‘T‘ rows containing the first moment of each predictive density
in each column.

var_mat A matrix with ‘T‘ rows containing the second moment of each predictive density
in each column.

delta A numeric value denoting the discount factor used to down-weight the past pre-
dictive performance of the subset combinations.

n_cores An integer that denotes the number of CPU-cores used for the computational
estimation.

Value

A list that contains: * (1) a vector with the first moments (point forecasts) of the STSC-Model, * (2)
a vector with the the second moments (variance) of the STSC-Model, * (3) a vector that contains
the selected values for gamma, * (4) a vector that contains the selected values for psi and * (5) a
matrix that indicates the selected signals for every point in time.

Author(s)

Philipp Adämmer, Sven Lehmann, Rainer Schüssler

4 hdflex

References

Beckmann, J., Koop, G., Korobilis, D., and Schüssler, R. A. (2020) "Exchange rate predictability
and dynamic bayesian learning." Journal of Applied Econometrics, 35 (4): 410–421.

Koop, G. and Korobilis, D. (2012) "Forecasting inflation using dynamic model averaging." Inter-
national Economic Review, 53 (3): 867–886.

Koop, G. and Korobilis, D. (2023) "Bayesian dynamic variable selection in high dimensions." In-
ternational Economic Review.

Raftery, A. E., Kárn‘y, M., and Ettler, P. (2010) "Online prediction under model uncertainty via
dynamic model averaging: Application to a cold rolling mill." Technometrics, 52 (1): 52–66.

Del Negro, M., Hasegawa, R. B., and Schorfheide, F. (2016) "Dynamic prediction pools: An in-
vestigation of financial frictions and forecasting performance." Journal of Econometrics, 192 (2):
391–405.

West, M. and Harrison, J. (1997) "Bayesian forecasting and dynamic models" Springer, 2nd edn.

See Also

https://github.com/lehmasve/hdflex#readme

Examples

See example for tvc().

hdflex hdflex: High-Dimensional Density Forecasts

Description

hdflex contains the forecasting algorithm STSC developed by Adämmer, Lehmann and Schüssler
(2023) <doi:10.2139/ssrn.4342487>. STSC is a novel time series forecasting method designed to
handle very large sets of predictive signals, many of which are irrelevant or have only short-lived
predictive power. Please cite the paper when using the package.

Author(s)

Philipp Adämmer, Sven Lehmann, Rainer Schüssler

https://github.com/lehmasve/hdflex#readme

inflation_data 5

inflation_data Dataset to estimate quarterly U.S. inflation

Description

A novel, high-dimensional dataset built by Koop and Korobilis (2023) that merges predictive signals
from several mainstream aggregate macroeconomic and financial datasets. The dataset includes the
FRED-QD dataset of McCracken and Ng (2020), augment with portfolio data used in Jurado et
al. (2015), stock market predictors from Welch and Goyal (2008), survey data from University of
Michigan consumer surveys, commodity prices from the World Bank’s Pink Sheet database, and key
macroeconomic indicators from the Federal Reserve Economic Data for four economies (Canada,
Germany, Japan, United Kingdom). The data is already pre-processed to perform one-step-ahead
forecasts and augmented with (external) point forecasts from Koop & Korobilis (2023). The dataset
spans the period 1960-Q3 to 2021-Q4.

Usage

inflation_data

Format

A matrix with 245 quarterly observations (rows) and 516 variables (columns).

Column 1:4 Transformed target variables: GDP deflator (GDPCTPI), PCE deflator (PCECTPI),
Total CPI (CPIAUCSL), Core CPI (CPILFESL)

Column 5:8 First lag of the target variables
Column 9:12 Second lag of the target variables
Column 13:16 All four (lagged) price series transformed with second differences of logarithms
Column 17:452 All remaining (lagged and transformed) signals from the FRED-QD dataset of

McCracken and Ng (2020), portfolio data used in Jurado et al. (2015), stock market pre-
dictors from Welch and Goyal (2008), survey data from University of Michigan consumer
surveys, commodity prices from the World Bank’s Pink Sheet database, and key macroeco-
nomic indicators from the Federal Reserve Economic Data for Canada, Germany, Japan &
United Kingdom.

Column 453:468 External point forecasts for quarterly GDP deflator (GDPCTPI) generated by the
MatLab Code from Koop and Korobilis (2023). The forecasts were generated out-of-sample
from 1976-Q1 to 2021-Q4.

Column 469:484 External point forecasts for quarterly PCE deflator (PCECTPI) generated by the
MatLab Code from Koop and Korobilis (2023). The forecasts were generated out-of-sample
from 1976-Q1 to 2021-Q4.

Column 485:500 External point forecasts for quarterly Total CPI (CPIAUCSL) generated by the
MatLab Code from Koop and Korobilis (2023). The forecasts were generated out-of-sample
from 1976-Q1 to 2021-Q4.

Column 501:516 External point forecasts for quarterly Core CPI (CPILFESL) generated by the
MatLab Code from Koop and Korobilis (2023). The forecasts were generated out-of-sample
from 1976-Q1 to 2021-Q4.

6 stsc

Source

<https://doi.org/10.1111/iere.12623>

References

Jurado, K., Ludvigson, S. C., and Ng, S. (2015) "Measuring uncertainty." American Economic
Review, 105 (3): 1177–1216.

Koop, G. and Korobilis, D. (2023) "Bayesian dynamic variable selection in high dimensions." In-
ternational Economic Review.

McCracken, M., and S. Ng (2020) “FRED-QD: A Quarterly Database for Macroeconomic Re-
search” National Bureau of Economic Research, Working Paper 26872.

Welch, I. and Goyal, A. (2008) "A comprehensive look at the empirical performance of equity
premium prediction." The Review of Financial Studies, 21 (4): 1455–1508.

stsc Signal-Transform-Subset-Combination (STSC)

Description

‘stsc()‘ is a time series forecasting method designed to handle vast sets of predictive signals, many of
which are irrelevant or short-lived. The method transforms heterogeneous scalar-valued signals into
candidate density forecasts via time-varying coefficient models (TV-C), and subsequently, combines
them into a final density forecast via dynamic subset combination (DSC).

Usage

stsc(
y,
X,
Ext_F,
sample_length,
lambda_grid,
kappa_grid,
burn_in_tvc,
gamma_grid,
psi_grid,
delta,
burn_in_dsc,
method,
equal_weight,
risk_aversion = NULL,
min_weight = NULL,
max_weight = NULL

)

stsc 7

Arguments

y A matrix of dimension ‘T * 1‘ or numeric vector of length ‘T‘ containing the
observations of the target variable.

X A matrix with ‘T‘ rows containing the lagged ’simple’ signals in each column.
Use NULL if no ’simple’ signal shall be included.

Ext_F A matrix with ‘T‘ rows containing point forecasts of y in each column. Use
NULL if no point forecasts shall be included.

sample_length An integer that denotes the number of observations used to initialize the obser-
vational variance and the coefficients’ variance in the TV-C models.

lambda_grid A numeric vector with values between 0 and 1 denoting the discount factor(s)
that control the dynamics of the time-varying coefficients. Each signal in com-
bination with each value of lambda provides a separate candidate forecast. Con-
stant coefficients are nested for the case ‘lambda = 1‘.

kappa_grid A numeric vector between 0 and 1 to accommodate time-varying volatility in
the TV-C models. The observational variance is estimated via Exponentially
Weighted Moving Average. Constant variance is nested for the case ‘kappa =
1‘. Each signal in combination with each value of kappa provides a separate
forecast.

burn_in_tvc An integer value ‘>= 1‘ that denotes the number of observations used to ’initial-
ize’ the TV-C models. After ’burn_in_tvc’ observations the generated sum of
discounted predictive log-likelihoods (DPLLs) of each Candidate Model (TV-C
model) and Subset Combination (combination of gamma and psi) is resetted.
‘burn_in_tvc = 1‘ means no burn-in period is applied.

gamma_grid A numerical vector that contains discount factors between 0 and 1 to exponen-
tially down-weight the past predictive performance of the candidate forecasts.

psi_grid An integer vector that controls the (possible) sizes of the active subsets.

delta A numeric value between 0 and 1 denoting the discount factor used to down-
weight the past predictive performance of the subset combinations.

burn_in_dsc An integer value ‘>= 1‘ that denotes the number of observations used to ’initial-
ize’ the Dynamic Subset Combinations. After ’burn_in_dsc’ observations the
generated sum of discounted predictive log-likelihoods (DPLLs) of each Subset
Combination (combination of gamma and psi) is resetted. ‘burn_in_dsc = 1‘
means no burn-in period is applied.

method An integer of the set ‘1, 2, 3, 4‘ that denotes the method used to rank the
Candidate Models (TV-C models) and Subset Combinations according to their
performance. Default is ‘method = 1‘ which ranks according to their gener-
ated sum of discounted predictive log-likelihoods (DPLLs). ‘method = 2‘ uses
Squared-Error (SE) instead of DPLLs. ‘method = 3‘ uses Absolute-Error (AE)
and ‘method = 4‘ uses Compounded-Returns (in this case the target variable y
has to be a time series of financial returns).

equal_weight A boolean that denotes whether equal weights are used to combine the candi-
date forecasts within a subset. If ‘FALSE‘, the weights are calculated using
the softmax-function on the predictive log-scores of the candidate models. The
method proposed in Adaemmer et al (2023) uses equal weights to combine the
candidate forecasts.

8 stsc

risk_aversion A double ‘>= 0‘ that denotes the risk aversion of an investor. A higher value
indicates a risk avoiding behaviour.

min_weight A double that denotes the lower bound for the weight placed on the market. A
non-negative value rules out short sales.

max_weight A double that denotes the upper bound for the weight placed on the market. A
value of e.g. 2 allows for a maximum leverage ratio of two.

Value

A list that contains: * (1) a vector with the first moments (point forecasts) of the STSC-Model, *
(2) a vector with the second moments (variance) of the STSC-Model, * (3) a vector that contains
the selected values for gamma, * (4) a vector that contains the selected values for psi and * (5) a
matrix that indicates the selected signals for every point in time.

Author(s)

Philipp Adämmer, Sven Lehmann, Rainer Schüssler

References

Beckmann, J., Koop, G., Korobilis, D., and Schüssler, R. A. (2020) "Exchange rate predictability
and dynamic bayesian learning." Journal of Applied Econometrics, 35 (4): 410–421.

Dangl, T. and Halling, M. (2012) "Predictive regressions with time-varying coefficients." Journal
of Financial Economics, 106 (1): 157–181.

Del Negro, M., Hasegawa, R. B., and Schorfheide, F. (2016) "Dynamic prediction pools: An in-
vestigation of financial frictions and forecasting performance." Journal of Econometrics, 192 (2):
391–405.

Koop, G. and Korobilis, D. (2012) "Forecasting inflation using dynamic model averaging." Inter-
national Economic Review, 53 (3): 867–886.

Koop, G. and Korobilis, D. (2023) "Bayesian dynamic variable selection in high dimensions." In-
ternational Economic Review.

Raftery, A. E., Kárn‘y, M., and Ettler, P. (2010) "Online prediction under model uncertainty via
dynamic model averaging: Application to a cold rolling mill." Technometrics, 52 (1): 52–66.

West, M. and Harrison, J. (1997) "Bayesian forecasting and dynamic models" Springer, 2nd edn.

See Also

https://github.com/lehmasve/hdflex#readme

Examples

###
######### Forecasting quarterly U.S. inflation ##########
Please see Koop & Korobilis (2023) for further
details regarding the data & external forecasts
###

https://github.com/lehmasve/hdflex#readme

stsc 9

Packages
library("hdflex")

########## Get Data ##########
Load Data
inflation_data <- inflation_data
benchmark_ar2 <- benchmark_ar2

Set Index for Target Variable
i <- 1 # (1 -> GDPCTPI; 2 -> PCECTPI; 3 -> CPIAUCSL; 4 -> CPILFESL)

Subset Data (keep only data relevant for target variable i)
dataset <- inflation_data[, c(1+(i-1), # Target Variable

5+(i-1), # Lag 1
9+(i-1), # Lag 2

(13:16)[-i], # Remaining Price Series
17:452, # Exogenous Predictor Variables

seq(453+(i-1)*16,468+(i-1)*16))] # Ext. Point Forecasts

########## STSC ##########
Set Target Variable
y <- dataset[, 1, drop = FALSE]

Set 'Simple' Signals
X <- dataset[, 2:442, drop = FALSE]

Set External Point Forecasts (Koop & Korobilis 2023)
Ext_F <- dataset[, 443:458, drop = FALSE]

Set Dates
dates <- rownames(dataset)

Set TV-C-Parameter
sample_length <- 4 * 5
lambda_grid <- c(0.90, 0.95, 1)
kappa_grid <- 0.98

Set DSC-Parameter
gamma_grid <- c(0.40, 0.50, 0.60, 0.70, 0.80, 0.90,

0.91, 0.92, 0.93, 0.94, 0.95, 0.96,
0.97, 0.98, 0.99, 1.00)

psi_grid <- c(1:100)
delta <- 0.95

Apply STSC-Function
results <- hdflex::stsc(y,

X,
Ext_F,
sample_length,
lambda_grid,
kappa_grid,
burn_in_tvc = 79,
gamma_grid,

10 stsc

psi_grid,
delta,
burn_in_dsc = 1,
method = 1,
equal_weight = TRUE,
risk_aversion = NULL,
min_weight = NULL,
max_weight = NULL)

Assign DSC-Results
forecast_stsc <- results[[1]]
variance_stsc <- results[[2]]
chosen_gamma <- results[[3]]
chosen_psi <- results[[4]]
chosen_signals <- results[[5]]

Define Evaluation Period
eval_date_start <- "1991-01-01"
eval_date_end <- "2021-12-31"
eval_period_idx <- which(dates > eval_date_start & dates <= eval_date_end)

Trim Objects
oos_y <- y[eval_period_idx,]
oos_forecast_stsc <- forecast_stsc[eval_period_idx]
oos_variance_stsc <- variance_stsc[eval_period_idx]
oos_chosen_gamma <- chosen_gamma[eval_period_idx]
oos_chosen_psi <- chosen_psi[eval_period_idx]
oos_chosen_signals <- chosen_signals[eval_period_idx, , drop = FALSE]
oos_dates <- dates[eval_period_idx]

Add Dates
names(oos_forecast_stsc) <- oos_dates
names(oos_variance_stsc) <- oos_dates
names(oos_chosen_gamma) <- oos_dates
names(oos_chosen_psi) <- oos_dates
rownames(oos_chosen_signals) <- oos_dates

Part 2: Evaluation
Apply Summary-Function
summary_results <- summary_stsc(oos_y,

benchmark_ar2[, i],
oos_forecast_stsc)

Assign Summary-Results
cssed <- summary_results[[3]]
mse <- summary_results[[4]]

########## Results ##########
Relative MSE
print(paste("Relative MSE:", round(mse[[1]] / mse[[2]], 4)))

Plot CSSED
plot(x = as.Date(oos_dates),

summary_stsc 11

y = cssed,
ylim = c(-0.0008, 0.0008),
main = "Cumulated squared error differences",
type = "l",
lwd = 1.5,
xlab = "Date",
ylab = "CSSED") + abline(h = 0, lty = 2, col = "darkgray")

Plot Predictive Signals
vec <- seq_len(dim(oos_chosen_signals)[2])
mat <- oos_chosen_signals %*% diag(vec)
mat[mat == 0] <- NA
matplot(x = as.Date(oos_dates),

y = mat,
cex = 0.4,
pch = 20,
type = "p",
main = "Evolution of selected signal(s)",
xlab = "Date",
ylab = "Predictive Signal")

Plot Psi
plot(x = as.Date(oos_dates),

y = oos_chosen_psi,
ylim = c(1, 100),
main = "Evolution of the subset size",
type = "p",
cex = 0.75,
pch = 20,
xlab = "Date",
ylab = "Psi")

summary_stsc Statistical summary of the STSC-results

Description

‘summary_stsc()‘ returns a statistical summary of the results from dsc(). It provides statistical mea-
sures such as Clark-West-Statistic, OOS-R2, Mean-Squared-Error and Cumulated Sum of Squared-
Error-Differences.

Usage

summary_stsc(oos_y, oos_benchmark, oos_forecast_stsc)

Arguments

oos_y A matrix of dimension ‘T * 1‘ or numeric vector of length ‘T‘ containing the
out-of-sample observations of the target variable.

12 tvc

oos_benchmark A matrix of dimension ‘T * 1‘ or numeric vector of length ‘T‘ containing the out-
of-sample forecasts of an arbitrary benchmark (i.e. prevailing historical mean).

oos_forecast_stsc

A matrix of dimension ‘T * 1‘ or numeric vector of length ‘T‘ containing the
out-of-sample forecasts of dsc().

Value

List that contains: * (1) the Clark-West-Statistic, * (2) the Out-of-Sample R2, * (3) a vector with
the CSSED between the STSC-Forecast and the benchmark and * (4) a list with the MSE of the
STSC-Model and the benchmark.

Author(s)

Philipp Adämmer, Sven Lehmann, Rainer Schüssler

References

Clark, T. E. and West, K. D. (2007) "Approximately normal tests for equal predictive accuracy in
nested models." Journal of Econometrics, 138 (1): 291–311.

See Also

https://github.com/lehmasve/hdflex#readme

Examples

See example for tvc().

tvc Compute density forecasts based on univariate time-varying coeffi-
cient (TV-C) models in state-space form

Description

‘tvc()‘ can be used to generate density forecasts based on univariate time-varying coefficient models.
In each forecasting model, we include an intercept and one predictive signal. The predictive signal
either represents the value of a ’simple’ signal or the the value of an external point forecast. All
models are estimated independently from each other and estimation and forecasting are carried out
recursively.

Usage

tvc(y, X, Ext_F, lambda_grid, kappa_grid, init_length, n_cores)

https://github.com/lehmasve/hdflex#readme

tvc 13

Arguments

y A matrix of dimension ‘T * 1‘ or numeric vector of length ‘T‘ containing the
observations of the target variable.

X A matrix with ‘T‘ rows containing the lagged ’simple’ signals in each column.
Use NULL if no ’simple’ signal shall be included.

Ext_F A matrix with ‘T‘ rows containing point forecasts of y in each column. Use
NULL if no point forecasts shall be included.

lambda_grid A numeric vector denoting the discount factor(s) that control the dynamics of
the coefficients. Each signal in combination with each value of lambda pro-
vides a separate candidate forecast. Constant coefficients are nested for the case
‘lambda = 1‘.

kappa_grid A numeric vector to accommodate time-varying volatility. The observational
variance is estimated via Exponentially Weighted Moving Average. Constant
variance is nested for the case ‘kappa = 1‘. Each signal in combination with
each value of kappa provides a separate forecast.

init_length An integer that denotes the number of observations used to initialize the obser-
vational variance and the coefficients’ variance.

n_cores An integer that denotes the number of CPU-cores used for the computation.

Value

A list that contains:

* (1) a matrix with the first moments (point forecasts) of the conditionally normal predictive distri-
butions and

* (2) a matrix with the second moments (variance) of the conditionally normal predictive distribu-
tions.

Author(s)

Philipp Adämmer, Sven Lehmann, Rainer Schüssler

References

Beckmann, J., Koop, G., Korobilis, D., and Schüssler, R. A. (2020) "Exchange rate predictability
and dynamic bayesian learning." Journal of Applied Econometrics, 35 (4): 410–421.

Dangl, T. and Halling, M. (2012) "Predictive regressions with time-varying coefficients." Journal
of Financial Economics, 106 (1): 157–181.

Koop, G. and Korobilis, D. (2012) "Forecasting inflation using dynamic model averaging." Inter-
national Economic Review, 53 (3): 867–886.

Koop, G. and Korobilis, D. (2023) "Bayesian dynamic variable selection in high dimensions." In-
ternational Economic Review.

Raftery, A. E., Kárn‘y, M., and Ettler, P. (2010) "Online prediction under model uncertainty via
dynamic model averaging: Application to a cold rolling mill." Technometrics, 52 (1): 52–66.

West, M. and Harrison, J. (1997) "Bayesian forecasting and dynamic models" Springer, 2nd edn.

14 tvc

See Also

https://github.com/lehmasve/hdflex#readme

Examples

###
######### Forecasting quarterly U.S. inflation ##########
Please see Koop & Korobilis (2023) for further
details regarding the data & external forecasts
###

Packages
library("hdflex")

########## Get Data ##########
Load Data
inflation_data <- inflation_data
benchmark_ar2 <- benchmark_ar2

Set Index for Target Variable
i <- 1 # (1 -> GDPCTPI; 2 -> PCECTPI; 3 -> CPIAUCSL; 4 -> CPILFESL)

Subset Data (keep only data relevant for target variable i)
dataset <- inflation_data[, c(1+(i-1), # Target Variable

5+(i-1), # Lag 1
9+(i-1), # Lag 2

(13:16)[-i], # Remaining Price Series
17:452, # Exogenous Predictor Variables

seq(453+(i-1)*16,468+(i-1)*16))] # Ext. Point Forecasts

########## STSC ##########
Part 1: TV-C Model
Set Target Variable
y <- dataset[, 1, drop = FALSE]

Set 'Simple' Signals
X <- dataset[, 2:442, drop = FALSE]

Set External Point Forecasts (Koop & Korobilis 2023)
Ext_F <- dataset[, 443:458, drop = FALSE]

Set TV-C-Parameter
sample_length <- 4 * 5
lambda_grid <- c(0.90, 0.95, 1)
kappa_grid <- 0.98
n_cores <- 1

Apply TV-C-Function
results <- hdflex::tvc(y,

X,
Ext_F,

https://github.com/lehmasve/hdflex#readme

tvc 15

lambda_grid,
kappa_grid,
sample_length,
n_cores)

Assign TV-C-Results
forecast_tvc <- results[[1]]
variance_tvc <- results[[2]]

Define Burn-In Period
sample_period_idx <- 80:nrow(dataset)
sub_forecast_tvc <- forecast_tvc[sample_period_idx, , drop = FALSE]
sub_variance_tvc <- variance_tvc[sample_period_idx, , drop = FALSE]
sub_y <- y[sample_period_idx, , drop = FALSE]
sub_dates <- rownames(dataset)[sample_period_idx]

Part 2: Dynamic Subset Combination
Set DSC-Parameter
nr_mods <- ncol(sub_forecast_tvc)
gamma_grid <- c(0.40, 0.50, 0.60, 0.70, 0.80, 0.90,

0.91, 0.92, 0.93, 0.94, 0.95, 0.96, 0.97, 0.98, 0.99, 1.00)
psi_grid <- c(1:100)
delta <- 0.95
n_cores <- 1

Apply DSC-Function
results <- hdflex::dsc(gamma_grid,

psi_grid,
sub_y,
sub_forecast_tvc,
sub_variance_tvc,
delta,
n_cores)

Assign DSC-Results
sub_forecast_stsc <- results[[1]]
sub_variance_stsc <- results[[2]]
sub_chosen_gamma <- results[[3]]
sub_chosen_psi <- results[[4]]
sub_chosen_signals <- results[[5]]

Define Evaluation Period
eval_date_start <- "1991-01-01"
eval_date_end <- "2021-12-31"
eval_period_idx <- which(sub_dates > eval_date_start & sub_dates <= eval_date_end)

Trim Objects
oos_y <- sub_y[eval_period_idx,]
oos_forecast_stsc <- sub_forecast_stsc[eval_period_idx]
oos_variance_stsc <- sub_variance_stsc[eval_period_idx]
oos_chosen_gamma <- sub_chosen_gamma[eval_period_idx]
oos_chosen_psi <- sub_chosen_psi[eval_period_idx]
oos_chosen_signals <- sub_chosen_signals[eval_period_idx, , drop = FALSE]

16 tvc

oos_dates <- sub_dates[eval_period_idx]

Add Dates
names(oos_forecast_stsc) <- oos_dates
names(oos_variance_stsc) <- oos_dates
names(oos_chosen_gamma) <- oos_dates
names(oos_chosen_psi) <- oos_dates
rownames(oos_chosen_signals) <- oos_dates

Part 3: Evaluation
Apply Summary-Function
summary_results <- summary_stsc(oos_y,

benchmark_ar2[, i],
oos_forecast_stsc)

Assign Summary-Results
cssed <- summary_results[[3]]
mse <- summary_results[[4]]

########## Results ##########
Relative MSE
print(paste("Relative MSE:", round(mse[[1]] / mse[[2]], 4)))

Plot CSSED
plot(x = as.Date(oos_dates),

y = cssed,
ylim = c(-0.0008, 0.0008),
main = "Cumulated squared error differences",
type = "l",
lwd = 1.5,
xlab = "Date",
ylab = "CSSED") + abline(h = 0, lty = 2, col = "darkgray")

Plot Predictive Signals
vec <- seq_len(dim(oos_chosen_signals)[2])
mat <- oos_chosen_signals %*% diag(vec)
mat[mat == 0] <- NA
matplot(x = as.Date(oos_dates),

y = mat,
cex = 0.4,
pch = 20,
type = "p",
main = "Evolution of selected signal(s)",
xlab = "Date",
ylab = "Predictive Signal")

Plot Psi
plot(x = as.Date(oos_dates),

y = oos_chosen_psi,
ylim = c(1, 100),
main = "Evolution of the subset size",
type = "p",
cex = 0.75,
pch = 20,

tvc 17

xlab = "Date",
ylab = "Psi")

Index

∗ datasets
benchmark_ar2, 2
inflation_data, 5

benchmark_ar2, 2

dsc, 3

hdflex, 4
hdflex-package (hdflex), 4

inflation_data, 5

matrix, 2, 5

stsc, 6
summary_stsc, 11

tvc, 12

18

	benchmark_ar2
	dsc
	hdflex
	inflation_data
	stsc
	summary_stsc
	tvc
	Index

